

Welcome to pyqaxe’s documentation!

pyqaxe is a library to facilitate unifying data access from a
variety of sources. The basic idea is to expose data through custom
tables and adapters using python’s sqlite3 module.

cache = pyqaxe.Cache()
cache.index(pyqaxe.mines.Directory())
cache.index(pyqaxe.mines.GTAR())

for (positions,) in cache.query(
 'select data from gtar_records where name = "position"'):
 pass # do something with positions array

Installation

Install from PyPI:

pip install pyqaxe

Alternatively, install from source using the typical distutils
procedure:

python setup.py install

Examples

Usage examples go in the examples directory.

Documentation

	
class pyqaxe.Cache(location=':memory:', read_only=False)

	A queryable cache of data found in one or more datasets

Cache objects form the core around which the functionality of
pyqaxe is built. They reference an sqlite database at a particular
location; this can either be ‘:memory:’ (default) to build an
in-memory database or a filename to create persistent storage of
the cached contents.

The database is populated by indexing data sources, or mines,
which may expose files for other mines to work with or create
additional tables and associated conversion functions.

Caches and their mines can be reconsituted in a separate process
by simply opening a new Cache object pointing to the same file
location.

Caches can be opened in read-only mode which prevents
modifications to the underlying database. Data can be selected
from read-only databases, but indexing mines will not work.

Caches can be used as context managers. When the context exits,
the cache (and all of its open file handles) will be closed
automatically.

Cache objects create the following tables in the database:

	mines: The data sources that have been indexed by this object

	files: The files (or file-like objects) that have been exposed by indexed mines

The mines table has the following columns:

	pickle: A pickled representation of the mine

	update_time: The last time the mine was indexed

The files table has the following columns:

	path: The path of the file being referenced

	mine_id: Integer ID of the mine that provides the file

	
close()

	Close the connection to the database.

	
get_cache_size()

	Return the maximumnumber of files to keep open.

	
classmethod get_opened_cache(unique_id)

	Return a currently-opened cache by its unique identifier.

This method allows entries stored in the database to reference
living Cache objects by their persistent identifier, which
is useful for running additional queries on the database or
retrieving opened file objects.

	
index(mine, force=False)

	Index a new mine.

Mines may add entries to the table of files or create
additional tables. If a mine is new to this database, it will
be indexed regardless of the force argument.

	Parameters

	
	mine – Mine to index

	force – If True, force the mine to index its contents (usually implies some IO operations)

	Returns

	The mine object that was indexed

	
insert_file(conn, mine_id, path, mtime=None, parent=None)

	Insert a new entry into the files table.

	
named_mines

	A dictionary mapping active mine type names to objects.

	
open_file(row, mode='r', named=False)

	Open an entry from the files table.

Pass this function an entire row from the files table, just as
it is (i.e. select * from files where …). Dispatches its
work to the mine that owns the file. Returns a file-like
object.

	
ordered_mines

	A list of each active mine, in order of indexing.

	
query(*args, **kwargs)

	Run a query on the database.

See sqlite3.Connection.query() for details.

	
set_cache_size(value)

	Set the maximum number of files to keep open.

	
class pyqaxe.mines.directory.Directory(root='.', exclude_regexes=(), exclude_suffixes=(), relative=False)

	A simple recursive directory browser.

Directory populates the files table by recursively searching all
subdirectories of a given root directory.

	Parameters

	
	root – Base directory to begin searching

	exclude_regexes – Iterable of regex patterns that should be excluded from addition to the list of files upon a successful search

	exclude_suffixes – Iterable of suffixes that should be excluded from addition to the list of files

	relative – Whether to store absolute or relative paths (see below)

Relative paths: Directory can store relative, rather than
absolute, paths to files. To use absolute paths, set
relative=False in the constructor (default). To make the paths
be relative to the current working directory, set
relative=True. To have the paths be relative to the Cache
object that indexes this mine, set relative=cache for that cache
object.

Examples:

cache.index(Directory(exclude_regexes=[r'/\..*']))
cache.index(Directory(exclude_suffixes=['txt', 'zip']))

	
class pyqaxe.mines.gtar.GTAR(exclude_frames_regexes=('\.',))

	Interpret getar-format files.

GTAR parses zip, tar, and sqlite-format archives in the getar
format (https://libgetar.readthedocs.io) to expose trajectory
data. The getar files themselves are opened upon indexing to find
which records are available in each file, but the actual data
contents are read on-demand.

	Parameters

	exclude_frames_regexes – Iterable of regex patterns of quantity names that should be excluded as columns from gtar_frames table (see below)

GTAR objects create the following table in the database:

	gtar_records: Contains links to data found in all getar-format files

	gtar_frames: Contains sets of data stored by index for all getar-format files

The gtar_records table has the following columns:

	path: path within the archive of the record

	gtar_group: group for the record

	gtar_index: index for the record

	name: name for the record

	file_id: files table identifier for the archive containing this record

	data: exposes the data of the record. Value is a string, bytes, or array-like object depending on the stored format.

The gtar_frames table’s columns depend on which records are
found among the indexed files. For each unique index, it lists all
quantities found among all archives as columns (note that some
quantity names may need to be surrounded by quotes) up to that
index. gtar_frames contains the following additional columns:

	gtar_index: index for the record

	file_id: files table identifier for the archive containing this record

	:

	cache.query(‘SELECT box, position FROM gtar_frames’)

GTAR objects register a gtar_frame collation that can be used
to sort indices in the standard GTAR way, rather than sqlite’s
default string comparison:

cache.query('SELECT data FROM gtar_records WHERE name = "position" '
 'ORDER BY gtar_index COLLATE gtar_frame')

Note

Consult the libgetar documentation to find more details about
how records are encoded.

	
classmethod get_cache_size()

	Return the maximum number of files to keep open.

	
classmethod set_cache_size(value)

	Set the maximum number of files to keep open.

	
class pyqaxe.mines.glotzformats.GlotzFormats(exclude_regexes=(), exclude_suffixes=())

	Expose frames of glotzformats-readable trajectory formats.

GlotzFormats parses trajectory files and exposes them with a
common interface. Files are opened once upon indexing to query the
number of frames and data are read on-demand as frame data are
selected.

GlotzFormats objects create the following table in the database:

	glotzformats_frames: Contains entries for each frame found in all trajectory files

The glotzformats_frames table has the following columns:

	file_id: files table identifier for the archive containing this record

	cache_id: Cache unique identifier for the archive containing this record

	frame: Integer (0-based) corresponding to the frame index within the trajectory

	box: Glotzformats box object for the frame

	types: Glotzformats types object for the frame

	positions: Glotzformats positions object for the frame

	velocities: Glotzformats velocities object for the frame

	orientations: Glotzformats orientations object for the frame

	shapedef: Glotzformats shapedef object for the frame

Note

Consult the glotzformats documentation to find more details
about the encoding of the various data types listed here.

	
class pyqaxe.mines.tarfile.TarFile(target=None, exclude_regexes=(), exclude_suffixes=(), relative=False)

	Expose the files within one or more tar-format archives.

TarFile populates the files table from one or more “source” tar
archives. These archives can be entries that have been found by
previously-indexed mines (target=None) or a single file that
exists somewhere in the filesystem (target=’/path/to/file.tar’).

	Parameters

	
	target – Optional single tar file to open. If not given, expose records found inside all tar archives

	exclude_regexes – Iterable of regex patterns that should be excluded from addition to the list of files upon a successful search

	exclude_suffixes – Iterable of suffixes that should be excluded from addition to the list of files

	relative – Whether to use absolute or relative paths for target argument (see below)

Relative paths: TarFile can store the target tar archive
location as a relative, rather than absolute, path. To use paths
exactly as they are given, set relative=False in the constructor
(default). To make the path be relative to the current working
directory, set relative=True. To have the path be relative to
the Cache object that indexes this mine, set relative=cache
for that cache object.

Links: TarFile can be used to expose bundles of links to
files on the filesystem. When indexing the TarFile, if a link is
found and the file it references exists, that file will be added
to the files table. Relative link pathss are interpreted with
respect to the tar file they come from.

Examples:

cache.index(TarFile('archive.tar', relative=True))
cache.index(TarFile(exclude_regexes=[r'/\..*']))

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyqaxe	

 	
 	
 pyqaxe.mines.directory	

 	
 	
 pyqaxe.mines.glotzformats	

 	
 	
 pyqaxe.mines.gtar	

 	
 	
 pyqaxe.mines.tarfile	

Index

 C
 | D
 | G
 | I
 | N
 | O
 | P
 | Q
 | S
 | T

C

 	
 	Cache (class in pyqaxe)

 	
 	close() (pyqaxe.Cache method)

D

 	
 	Directory (class in pyqaxe.mines.directory)

G

 	
 	get_cache_size() (pyqaxe.Cache method)

 	(pyqaxe.mines.gtar.GTAR class method)

 	
 	get_opened_cache() (pyqaxe.Cache class method)

 	GlotzFormats (class in pyqaxe.mines.glotzformats)

 	GTAR (class in pyqaxe.mines.gtar)

I

 	
 	index() (pyqaxe.Cache method)

 	
 	insert_file() (pyqaxe.Cache method)

N

 	
 	named_mines (pyqaxe.Cache attribute)

O

 	
 	open_file() (pyqaxe.Cache method)

 	
 	ordered_mines (pyqaxe.Cache attribute)

P

 	
 	pyqaxe (module)

 	pyqaxe.mines.directory (module)

 	
 	pyqaxe.mines.glotzformats (module)

 	pyqaxe.mines.gtar (module)

 	pyqaxe.mines.tarfile (module)

Q

 	
 	query() (pyqaxe.Cache method)

S

 	
 	set_cache_size() (pyqaxe.Cache method)

 	(pyqaxe.mines.gtar.GTAR class method)

T

 	
 	TarFile (class in pyqaxe.mines.tarfile)

 nav.xhtml

 Table of Contents

 		
 Welcome to pyqaxe’s documentation!

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

